Постулат. Электронный научный журнал

УДК 514:519.6

Анимация в системе Maple циклоидальных кривых

Сизинцева Анастасия Александровна Приамурский государственный университет имени Шолом-Алейхема, студент

Эйрих Надежда Владимировна

Приамурский государственный университет имени Шолом-Алейхема к.ф.-м.н., доцент, декан факультета математики, информационных технологий и техники

Аннотация

Используя систему Maple, были получены анимационные ролики, демонстрирующие построение циклоидальных кривых как следа от фиксированной точки на окружности, катящейся по прямой или другой окружности.

Ключевые слова: циклоидальные кривые, направляющая циклоиды, обыкновенная циклоида, эпициклоида, гипоциклоида

Animation of Cycloid Curves in Maple system

Sizinceva Anastasiya Alexandrovna Sholom-Aleichem Priamursky State University, student

Eyrikh Nadezhda Vladimirovna Sholom-Aleichem Priamursky State University PhD in Mathematics, Associate Professor, Dean of the Department of Mathematics, IT and Techniques

Abstract

Using the Maple system we have created animations that display the forming of cycloid curves as a curve a trace of a fixed point on the circle that rolls along a straight line or another circle.

Keywords: cycloid curves, landmark cycloid, ordinary cycloid, epicycloid, hypocycloid

Циклоидальной кривой (или циклоидой) называется плоская кривая, описываемая точкой, стоящей на фиксированном расстоянии от центра круга, катящегося без скольжения по данной кривой — направляющей циклоиды [2]. В качестве направляющей может быть прямая или окружность. Различают три типа циклоидальных кривых: обыкновенная циклоида, эпициклоида и гипоциклоида. В случае обыкновенной циклоиды в качестве направляющей

выступает прямая. Для эпициклоиды и гипоциклоиды направляющей является окружность, при этом различают качение по внешней или внутренней стороне соответственно.

Циклоидальные кривые часто встречаются в природе, их давно изучают математики, свойства таких кривых имеют широкое применение [1, 3].

Используя современные математические пакеты (Mathcad, Maple, Mathematica) можно без труда получать изображения графиков этих кривых, причем не только статических, но и динамических (т.е. в движении). Например, система Maple в пакете расширений *plots* имеет простую функцию для создания анимированных графиков: *animatecurve* [4]. Задав уравнения кривой в явном или параметрическом виде, можно наблюдать медленное построение графика этой кривой на экране. Так обыкновенная циклоида имеет параметрические уравнения $x = a(t - \sin t)$, $y = a(1 - \cos t)$, $-\infty < t < +\infty$, где a — радиус катящейся окружности. Пример использования функции *апітатеситve* для построения анимированного графика обыкновенной циклоиды показан на рисунке 1.

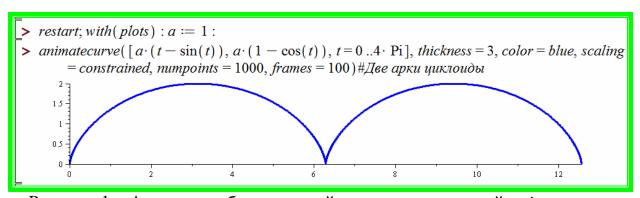


Рисунок 1 – Анимация обыкновенной циклоиды командой *animatecurve*

Однако такая анимация не дает полного представления о том, как именно получается эта кривая, что эта кривая является траекторией точки, зафиксированной на окружности, катящейся по прямой. Поэтому нами была составлена процедура, позволяющая воспроизвести катящуюся по прямой окружность с фиксированной точкой, которая оставляет после себя след – обыкновенную циклоиду (рис.2).

```
> F1 := proc(tt) local a:
    a := 1:
    plots[display](
    plot([a · (t - sin(t)), a · (1 - cos(t)), t = 0 ..tt], thickness = 3, color = blue, view = [0 ..14, 0 ..2]),
    plottools[circle]([a · tt, a], a, thickness = 2, color = green), plottools[point]([a · (tt - sin(tt)), a · (1 - cos(tt))], symbolsize = 15, symbol = solidcircle, color = black)
    );
    end proc:
```

Рисунок 2 – Процедура построения обыкновенной циклоиды

Анимацию составленной процедуры обеспечивает функция *animate* (рис.3). Параметр *theta* задает число оборотов окружности (один оборот – 2π , два оборота – 4π). Дополнительная опция *frames* задает число кадров анимации.

Рисунок 3 – Применение функции *animate* для процедуры *F1* построения обыкновенной циклоиды

На рисунке 4 приведены четыре кадра анимации процедуры F1. Окружность радиуса a=1 (зеленый цвет), с фиксированной точкой (черный цвет), катится по прямой и делает два полных оборота. В итоге на последнем кадре получаем на графике изображение двух арок обыкновенной циклоиды (синий цвет).

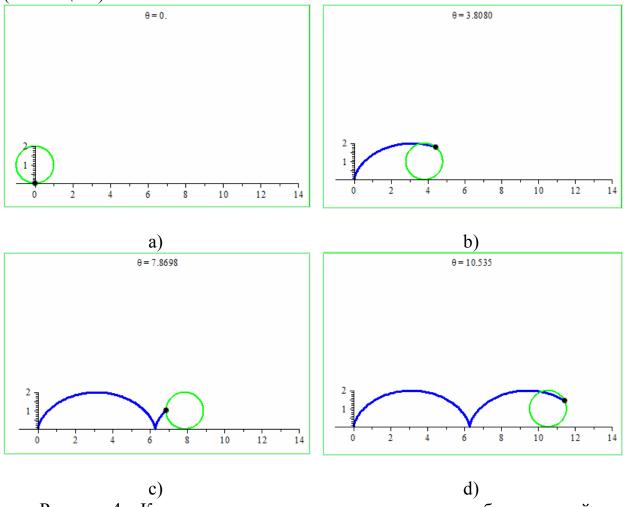


Рисунок 4 — Кадры анимации процедуры построения обыкновенной циклоиды

Добавление в функцию *animate* опции *background* (рис.5) позволяет дополнительно изобразить пунктиром на заднем плане ожидаемую траекторию точки – будущую циклоиду (рис.6).

```
> animate(F1, [theta], theta = 0 ..4 * Pi, scaling = constrained, frames = 100, background = plot([(t - \sin(t)), (1 - \cos(t)), t = 0 ..4 * Pi], linestyle = dash, color = blue));
```

Рисунок 5 – Применение функции *animate* с дополнительной опцией

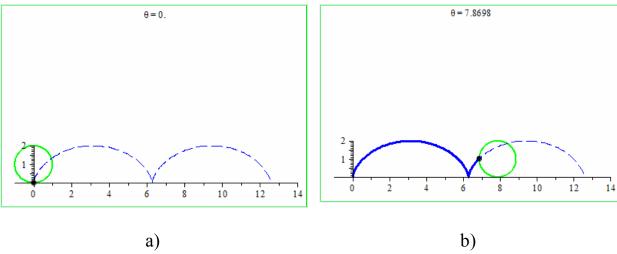


Рисунок 6 – Кадры анимации процедуры F1 с дополнительной опцией

Заменив в процедуре FI параметрические уравнения обыкновенной циклоиды на параметрические уравнения эпициклоиды $x = (a+b)\cos t - a\cos\left(\frac{(a+b)t}{a}\right), \quad y = (a+b)\sin t - a\sin\left(\frac{(a+b)t}{a}\right), \quad -\infty < t < +\infty,$ где b — радиус направляющей неподвижной окружности, a — радиус катящейся вне ее второй окружности, получаем процедуру FEPI — процедуру построения эпициклоиды (рис.7).

```
> FEP1 := \operatorname{proc}(tt) \operatorname{local} a, b:
a := 1 : b := 1:
\operatorname{plots}[\operatorname{display}]\Big(
\operatorname{plot}\Big(\Big[(a+b)\cdot\cos(t) - a\cdot\cos\Big(\frac{(a+b)\cdot t}{a}\Big), (a+b)\cdot\sin(t) - a\cdot\sin\Big(\frac{(a+b)\cdot t}{a}\Big), t = 0 ...tt\Big],
\operatorname{thickness} = 3, \operatorname{color} = \operatorname{blue}, \operatorname{view} = [-(2 \cdot a+b) ...2 \cdot a+b, -(2 \cdot a+b) ...(2 \cdot a+b)]\Big),
\operatorname{plottools}[\operatorname{circle}]([(a+b)\cdot\cos(tt), (a+b)\cdot\sin(tt)], a, \operatorname{thickness} = 2, \operatorname{color} = \operatorname{green}),
\operatorname{plottools}[\operatorname{point}]\Big(\Big[(a+b)\cdot\cos(tt) - a\cdot\cos\Big(\frac{(a+b)\cdot tt}{a}\Big), (a+b)\cdot\sin(tt) - a
\cdot\sin\Big(\frac{(a+b)\cdot tt}{a}\Big)\Big], \operatorname{symbolsize} = 15, \operatorname{symbol} = \operatorname{solidcircle}, \operatorname{color} = \operatorname{black}\Big)\Big);
end \operatorname{proc}:
```

Рисунок 7 – Процедура *FEP1* построения эпициклоиды

Вид получаемых кривых зависит от соотношения m = b/a радиусов неподвижной и катящейся окружностей. Если m = 1, то используя функцию

animate для процедуры FEP1, получаем анимационный ролик построения кардиоиды (рис.8).

```
b := 1: animate(FEP1, [theta], theta = 0 ...2 * Pi, background = plot([b \cdot cos(t), b \cdot sin(t), t = 0 ...2 * Pi], linestyle = dash), scaling = constrained, frames = 100);
```

Рисунок 8 – Анимация процедуры *FEP1* построения кардиоиды

Свое название кардиоида получила из-за схожести со стилизованным изображением сердца (греч. $\kappa\alpha\rho\delta(\alpha-\text{сердце},\text{греч}.\ \epsilon\tilde{\imath}\delta\circ(-\text{вид})$). Таким образом, кардиоида является частным случаем эпициклоиды, которая описывается фиксированной точкой окружности, катящейся по неподвижной окружности такого же радиуса (рис.9).

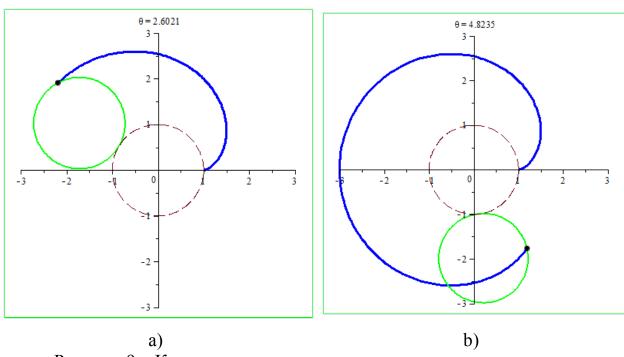


Рисунок 9 – Кадры анимации процедуры построения кардиоиды

Перебирая различные соотношения m = b/a, получаем анимационные ролики построения множества красивых и интересных кривых, небольшая часть из которых приведена на рисунке 10. В частности, если радиус неподвижной окружности в два раза больше радиуса катящейся окружности, получаем нефроиду (от др.-греч. vє ϕ ρ ϕ ς – «почка» и ε і δ о ϕ ς – «вид, фигура»), кривая по своей форме действительно напоминает почки (рис.10,а). Если m – целое число, то по форме эпициклоиды напоминают «цветы ромашки» с количеством лепестков, равным m (рис.10,b). Еще более красивые кривые получаются, если соотношение m является рациональным числом, т.е. m = p/q (рис.10,c,d). Для получения красивой замкнутой кривой в этом случае катящейся окружности не достаточно только одного оборота, она должна сделать q оборотов.

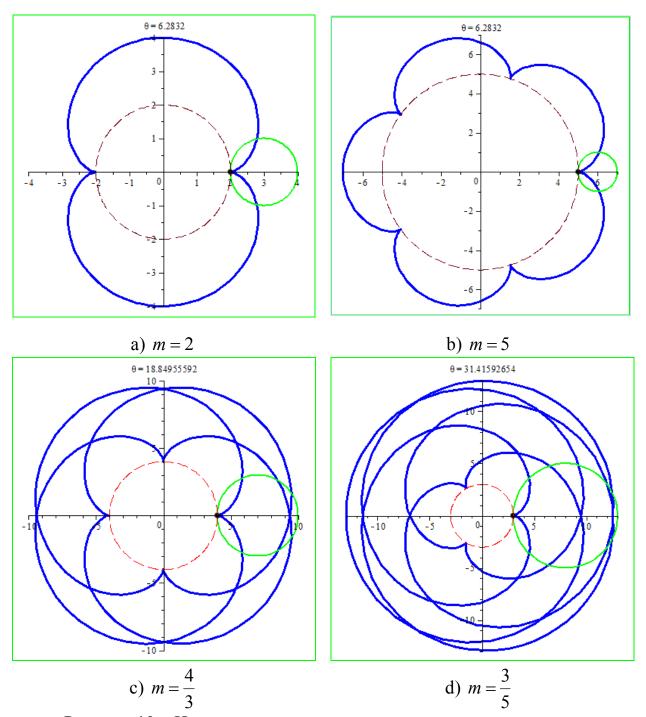


Рисунок 10 — Итоговые кадры анимации процедуры построения эпициклоиды для различных m

Использовав параметрические уравнения гипоциклоиды $x=(b-a)\cos t + a\cos\left(\frac{(b-a)t}{a}\right), \quad y=(b-a)\sin t - a\sin\left(\frac{(b-a)t}{a}\right), \quad -\infty < t < +\infty,$ где b>a, была получена процедура FGIP1 для построения этой кривой (рис.11).

```
> FGIP3 := \mathbf{proc}(tt) \ \mathbf{local} \ a, b :
a := 1 : b := 3 :
plots[display] \Big(
plot\Big(\Big[(b-a)\cdot\cos(t) + a\cdot\cos\Big(\frac{(b-a)\cdot t}{a}\Big), (b-a)\cdot\sin(t) - a\cdot\sin\Big(\frac{(b-a)\cdot t}{a}\Big), t = 0 ...tt\Big],
thickness = 3, color = blue, view = [-b ..b, -b ..b]\Big),
plottools[circle]([(b-a)\cdot\cos(tt), (b-a)\cdot\sin(tt)], a, thickness = 2, color = green),
plottools[point] \Big(\Big[(b-a)\cdot\cos(tt) + a\cdot\cos\Big(\frac{(b-a)\cdot tt}{a}\Big), (b-a)\cdot\sin(tt) - a
\cdot\sin\Big(\frac{(b-a)\cdot tt}{a}\Big)\Big], symbolsize = 15, symbol = solidcircle, color = black\Big) \Big);
end proc:
```

Рисунок 11 – Процедура построения гипоциклоиды

Вид гипоциклоиды также зависит от соотношения m = b/a. В частности, если радиус катящейся окружности в три раза меньше радиуса неподвижной окружности, то, используя функцию *animate* для процедуры FGIP1, получаем анимационный ролик построения кривой, носящей название дельтоида или кривая Штейнера (рис.12).

```
b := 3: animate(FGIP3, [theta], theta = 0 ... 2 * Pi, <math>background = plot([b \cdot cos(t), b \cdot sin(t), t = 0 ... 2  * Pi], linestyle = dash), scaling = constrained, frames = 100);
```

Рисунок 12 – Анимация процедуры *FGIP1* построения дельтоиды

Свое название кривая получила за сходство с греческой буквой «дельта» (рис.13).

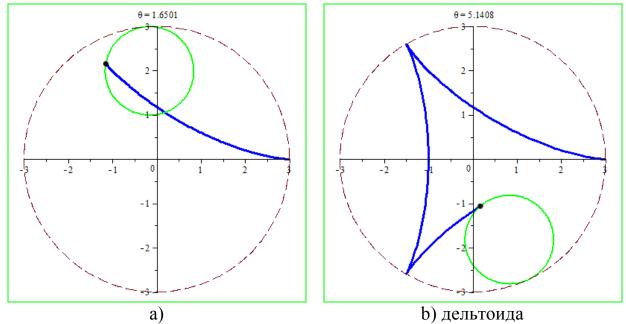


Рисунок 13 – Кадры анимации процедуры построения дельтоиды

В общем случае, если соотношение m — целое число, то гипоциклоида представляет из себя замкнутую кривую, состоящую из m равных дуг (рис.14 a,b,c). Отметим случай, когда m=4, тогда кривая называется астроида, то есть звездообразная (от греч. $\alpha \sigma \tau \rho o v$ — звезда и $\epsilon \iota \delta o \varsigma$ — вид) Название кривой предложил австрийский астроном Карл Людвиг фон Литров в 1838 г. Если же m=p/q, то получается p пересекающихся дуг, когда катящаяся окружность сделает q оборотов (рис.14,d).

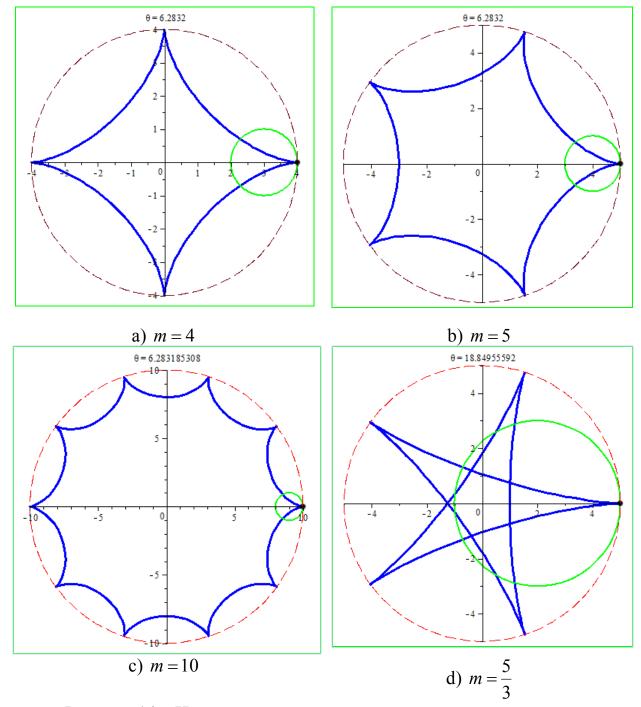


Рисунок 14 – Итоговые кадры анимации процедуры построения гипоциклоиды для различных *m*

Подготовленные анимационные ролики могут быть широко использованы в учебном процессе. С их помощью можно не только познакомить с циклоидальными кривыми, но и обратить внимание на отдельные свойства графиков, проиллюстрировать характер изменений при смене параметров. Кроме того, эта анимация служит наглядным подтверждением слов древнегреческого философа Аристотеля: «Математика выявляет порядок, симметрию и определенность, а это — важнейшие виды прекрасного».

Библиографический список

- 1. Акопян А.В. Геометрия кардиоиды // Квант. 2012. №3. С. 39-41.
- 2. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. М.: Наука, 1986. 544 с.
- 3. Далингер В.А., Грибова Е.Н. Фейерверк замечательных кривых: Учебное пособие. Омск: Изд-во ОмГПУ, 1998. 87 с.
- 4. Дьяконов В.П. Maple 9.5/10 в математике, физике и образовании. М.: СОЛОН-Пресс, 2006. 720 с.